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Contenuti della lezione
 Memorizzare e gestire I Big Data

 Hadoop & Map-reduce
 Cloud computing
 NoSQL DBMS
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Big Data in azione Goal:
to make effective 
strategic decisions 
exploiting the 
availability of big 
data
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Integrazione

Analisi

Interpretazione

Decisione



Big Data in azione Requires:
 selection
 filtering
 Metadata 

generation
 Managing 

provenance
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Big Data in azione Requires:
 transformation
 normalization
 cleaning
 aggregation
 error handling
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Big Data in azione Requires:
 standardization
 Conflict 

management
 reconciliation
 Mapping 

definition
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Big Data in azione Requires:
 exploration
 data mining
 Machine learning
 visualization
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Big Data in azione Requires:
 Knowledge of the 

domain
 knowledge of the 

provenance
 Identification of 

patterns of interest
 Flexibility of the 

process
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Big Data in azione Requires:
 managerial skills
 Continuous 

improvement of 
the process
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Challenges
 Performance, performance, performance!
 Scalability
 Heterogeneity
 Effectiveness
 Flexibility
 Privacy
 Property
 Human collaboration
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Data Volumes

From https://docs.microsoft.com/en-us/azure/architecture/data-guide/big-data/ 

 The amount of data increases every day
 Some numbers (∼ 2012):

 Data processed by Google every day: 100+ PB
 Data processed by Facebook every day: 10+ PB

 To analyze them, systems that scale with respect to the data volume are 
needed
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Data volumes: Google Example
 Analyze 10 billion web pages
 Average size of a webpage: 20KB
 Size of the collection: 10 billion x 20KBs = 200TB
 HDD hard disk read bandwidth: 550MB/sec
 Time needed to read all web pages (without analyzing them): 2 

million seconds = more than 15 days
 A single node architecture is not adequate
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Data volumes: Google Example
 Analyze 10 billion web pages
 Average size of a webpage: 20KB
 Size of the collection: 10 billion x 20KBs = 200TB
 SSD hard disk read bandwidth: 550MB/sec
 Time needed to read all web pages (without analyzing them): 2 

million seconds = more than 4 days
 A single node architecture is not adequate
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Failures
 Failures are part of everyday life, especially in data center

 A single server stays up for 3 years (~1000 days)
 10 servers ~ 1 failure every 100 days (~3 months)
 100 servers ~ 1 failure every 10 days
 1000 servers ~ 1 failure/day

 Sources of failures
 Hardware/Software
 Electrical, Cooling, ...
 Unavailability of a resource due to overload
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Failures
 LALN data [DSN 2006]

 Data for 5000 machines, for 9 years
 Hardware failures: 60%, Software: 20%, Network 5%

 DRAM error analysis [Sigmetrics 2009]
 Data for 2.5 years
 8% of DIMMs affected by errors

 Disk drive failure analysis [FAST 2007]
 Utilization and temperature major causes of failures
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Failures
 Failure types

 Permanent
 E.g., Broken motherboard

 Transient
 E.g., Unavailability of a resource due to overload
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Network bandwidth
 Network becomes the bottleneck if big amounts of data need to be 

exchanged between nodes/servers
 Network bandwidth (in a data center): 10Gbps
 Moving 10 TB from one server to another takes more than 2 hours  

Data should be moved across nodes only when it is indispensable
 Usually, codes/programs are small (few MBs)

Move code (programs) and computation to data
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Network bandwidth
 Network becomes the bottleneck if big amounts of data need to be 

exchanged between nodes/servers
 Network bandwidth (in a data center): 10Gbps
 Moving 10 TB from one server to another takes more than 2 hours  

Data should be moved across nodes only when it is indispensable
 Usually, codes/programs are small (few MBs)

Move code (programs) and computation to data
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Data locality

Basi di Dati e di Conoscenza - Basi di Dati e Big Data



Single-node architecture
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Server (Single node) 
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Single-node architecture

 Small data
 Data can be completely loaded 

in main memory

CPU

Memory

Machine Learning, Statistics
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Single-node architecture

 Large data
 Data can not be completely loaded in main 

memory
 Load in main memory one chunk of data at a 

time
 Process it and store some statistics
 Combine statistics to compute the final result

CPU

Memory

“Classical” data mining

Disk
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Cluster Architecture
 Cluster of servers (data center)

 Computation is distributed across servers
 Data are stored/distributed across servers

 Standard architecture in the Big data context (∼ 2012)
 Cluster of commodity Linux nodes/servers

 32 GB of main memory per node

 Gigabit Ethernet interconnection
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Commodity Cluster Architecture
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Scalability
 Current systems must scale to address

 The increasing amount of data to analyze
 The increasing number of users to serve
 The increasing complexity of the problems

 Two approaches are usually used to address scalability issues
 Vertical scalability (scale up)
 Horizontal scalability (scale out)
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Scale up vs. Scale out
 Vertical scalability (scale up)

 Add more power/resources (main memory, CPUs) to a single node (high-
performing server)
 Cost of super-computers is not linear with respect to their resources

 Horizontal scalability (scale out)
 Add more nodes (commodity servers) to a system

 The cost scales approximately linearly with respect to the number of added nodes
 But data center efficiency is a difficult problem to solve

Paola Vocca 25Basi di Dati e di Conoscenza - Basi di Dati e Big Data



Scale up vs. Scale out
 For data-intensive workloads, a large number of commodity servers is 

preferred over a small number of high-performing servers
 At the same cost, we can deploy a system that processes data more 

efficiently and is more fault-tolerant
 Horizontal scalability (scale out) is preferred for big data applications

 But distributed computing is hard
 New systems hiding the complexity of the distributed part of the problem to 

developers are needed
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Cluster computing challenges
 Distributed programming is hard

 Problem decomposition and parallelization
 Task synchronization

 Task scheduling of distributed applications is critical
 Assign tasks to nodes by trying to

 Speed up the execution of the application
 Exploit (almost) all the available resources
 Reduce the impact of node failures
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Cluster computing challenges
 Distributed data storage

 How do we store data persistently on disk and keep it available if nodes 
can fail?
 Redundancy is the solution, but it increases the complexity of the system

 Network bottleneck
 Reduce the amount of data send through the network

 Move computation and code to data
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Cluster computing challenges
 Distributed computing is not a new topic

 HPC (High-performance computing) ~1960
 Grid computing ~1990
 Distributed databases ~1990

 Hence, many solutions to the mentioned challenges are already 
available

 But we are now facing big data driven-problems
The former solutions are not adequate to address big data volumes
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Typical Big Data Problem
 Typical Big Data Problem

 Iterate over a large number of records/objects
 Extract something of interest from each record/object
 Aggregate intermediate results
 Generate final output

 The challenges:
 Parallelization
 Distributed storage of large data sets (Terabytes, Petabytes)
 Node Failure management
 Network bottleneck
 Diverse input format (data diversity & heterogeneity)
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Processing Big Data
 Frameworks to process Big Data

 Relational DBMS: old fashion
 NoSQL data stores and NewSQL databases
 Batch processing: store and process data sets at massive scale (especially 

Volume+Variety)
 MapReduce and Hadoop
 Spark

 Data stream processing: process fast data (in real-time) as data is being 
generated, without storing

Our focus
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Parallel programming: background
 Parallel programming

 Simultaneous use of multiple computing resources (e.g., processors) to 
solve a problem

 How? Break processing into parts that can be executed concurrently on 
multiple computing resources
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Parallel programming: background
 Simplest environment for parallel programming

 Master/worker architecture
 Master

 Gets data and splits it into chunks according to the number of workers
 Sends each worker equal Number of chunks
 Receives results from each worker

 Workers:
 Receive some chunks of data from master
 Perform processing
 Send back results to master
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Parallel programming: background
 There are several styles of parallel programming
 Single Program, Multiple Data (SPMD) is the most commonly used

 Single Program: all computing resources execute the same program 
simultaneously

 Multiple Data: all computing resources may use different data
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Example: Pi estimation
 Estimation algorithm for calculating π

 Relies on Monte Carlo method
 Let’s first consider the sequential version of the algorithm
 Then, how to realize a parallel and faster version
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Example: Pi estimation
 By definition, π is the area of a circle with radius equal to 1
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Example: Pi estimation
 How to estimate π?
1. Pick a large number of points randomly inside the circumscribed unit 

square
 A certain number of these points will end up inside the area described by 

the circle, while the remaining number of these points will lie outside of it 
(but inside the square)

2. Count the fraction of points that end up inside the circle out of a total 
population of points randomly thrown at the circumscribed square
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Example: Pi estimation
 In formulas:

 The more points generated, the greater the accuracy of the estimation
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Example: Pi estimation
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See animation at https://academo.org/demos/estimating-pi-monte-carlo/

https://academo.org/demos/estimating-pi-monte-carlo/


Example: Pi estimation
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The more points generated, the 
greater the accuracy of the 
estimation



Example: Pi estimation
 How to get an accurate and faster estimation of π?
 From sequential to parallel computation
 Use master/worker approach

 Each worker runs the algorithm to generate a set of random points, 
categorize them, and count how many end up inside the circle

 The master collects from the workers the total number of generated points 
and total number of points in the circle. It calculates the ratio of the two 
numbers and multiplies it by 4 to get a more accurate estimation of π
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Key idea behind MapReduce and 
Spark: Divide and conquer
 Feasible approach to tackle large-data problems

 Partition a large problem into smaller sub-problems
 Solve independent sub-problems in parallel
 Combine intermediate results from each individual worker
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Divide and conquer: how?
 Decompose the original problem in smaller, parallel tasks
 Schedule tasks on workers distributed in a cluster, keeping into 

account:
 Data locality
 Resource availability

 Ensure workers get the data they need
 Coordinate synchronization among workers
 Share partial results
 Handle failures
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Key idea behind MapReduce and 
Spark: scale out, not up!
 For data-intensive workloads, a large number of commodity servers is 

preferred over a small number of high-end servers
 Cost of super-computers is not linear
 Data center efficiency

 Processing data is quick, I/O is slow
 Shared nothing is preferable over sharing

 Shared nothing: each node is completely independent of other nodes in the 
system, no shared memory or storage
✓ Scalability and fault tolerance

 Sharing: nodes share a common/global state that must be managed
✗ Requires synchronization, deadlocks can occur, shared resources can become 
bottlenecks (e.g., bandwidth to access stored data)
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Technology: Hadoop & MapReduce
 What is Hadoop?

 An open-source software framework (Apache project)
 Originally developed by Yahoo!

 Goal: storage and processing of data-sets at massive scale
 Infrastructure: clusters of commodity hardware
 Core:

 HDFS, a distributed file system
 MapReduce, a programming model for large scale data processing

 Includes a number of related projects
 Apache Pig, Apache Hive, Apache HBase, etc..

 Used in production by Google, Facebook, Yahoo! and many others
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The core of Hadoop
 HDFS

 A distributed file systems
 Servers can fail and not abort the computation process
 Data is replicated with redundancy across the cluster

 MapReduce
 Programming paradigm for expressing distributed computations over multiple 

servers
 The powerhouse behind most of today’s big data processing
 Also used in other MPP environments and NoSQL databases (e.g., Vertica and 

MongoDB)
 Improving programmability: Pig and Hive
 Improving data access: HBase, Sqoop, and Flume
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Apache Hadoop
 Scalable fault-tolerant distributed system for Big Data

 Distributed Data Storage
 Distributed Data Processing
 Borrowed concepts/ideas from the systems designed at Google (Google 

File System for Google’s MapReduce)
 Open source project under the Apache license

 But there are also many commercial implementations (e.g., Cloudera, 
Hortonworks, MapR)
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Hadoop History
 Dec 2004 – Google published a paper about GFS
 July 2005 – Nutch uses MapReduce
 Feb 2006 – Hadoop becomes a Lucene subproject
 Apr 2007 – Yahoo! runs it on a 1000-node cluster
 Jan 2008 – Hadoop becomes an Apache Top Level Project
 Jul 2008 – Hadoop is tested on a 4000 node cluster
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Hadoop History
 Feb 2009 – The Yahoo! Search Webmap is a Hadoop application that 

runs on more than 10,000 core Linux cluster
 June 2009 – Yahoo! made available the source code of its production 

version of Hadoop
 In 2010 Facebook claimed that they have the largest Hadoop cluster in 

the world with 21 PB of storage
 On July 27, 2011 they announced the data has grown to 30 PB.
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Hadoop: main components
 Core components of Hadoop:

 Distributed Big Data Processing Infrastructure based on the MapReduce 
programming paradigm
 Provides a high-level abstraction view

 Programmers do not need to care about task scheduling and synchronization
 Fault-tolerant

 Node and task failures are automatically managed by the Hadoop system
 HDFS (Hadoop Distributed File System)

 High availability distributed storage
 Fault-tolerant
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Hadoop: main components
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Hadoop: main components
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Hadoop: main components
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Distributed Big Data Processing 
Infrastructure
 Separates the what from the how

 Hadoop programs are based on the MapReduce programming paradigm
 MapReduce abstracts away the “distributed” part of the problem 

(scheduling, synchronization, etc)
 Programmers focus on what

 The distributed part (scheduling, synchronization, etc) of the problem is 
handled by the framework
 The Hadoop infrastructure focuses on how
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Distributed Big Data Processing 
Infrastructure
 But an in-depth knowledge of the Hadoop framework is important to 

develop efficient applications
 The design of the application must exploit data locality and limit network 

usage/data sharing
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HDFS
 Each file is split in “chunks/blocks” that are spread across the servers

 Each chuck is replicated on different servers (usually there are 3 replicas per 
chunk)
 Ensures persistence and availability
 To increase persistence and availability, replicas are stored in different racks, if it is possible

 Typically each chunk is 64-128MB
 A special file (the master node) stores, for each file, the positions of its
 Chunks

 The master node is itself replicated
 A directory for the file system knows where to find the master node
 The directory itself can be replicated
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HDFS
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HDFS
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 The Master node, a.k.a. Name Nodes in HDFS, is a special node/server 
that
 Stores HDFS metadata

 E.g., the mapping between the name of a file and the location of its chunks
 Might be replicated

 Client applications: file access through HDFS APIs
 Talk to the master node to find data/chuck servers associated with the file 

of interest
 Connect to the selected chunk servers to access data
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HDFS
 An HDFS cluster has two types of nodes:

 Multiple DataNodes
 The NameNode
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HDFS
 The datanodes just store and retrieve the blocks when they are told to 

(by clients or the namenode)
 The namenode:

 Manages the filesystem tree and the metadata for all the files and 
directories

 Knows the datanodes on which all the blocks for a given file are located
 Without the namenode HDFS cannot be used
 It is important to make the namenode resilient to failure
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HDFS I/O
 An application client wishing to read a file (or a portion thereof) must first 

contact the namenode to determine where the actual data is stored
 In response to the client request the namenode returns: 

 the relevant block id
 the location where the block is held (i.e., which datanode)

 The client then contacts the datanode to retrieve the data.
 Blocks are themselves stored on standard single-machine file systems

 HDFS lies on top of the standard OS stack
 Important feature of the design:

 data is never moved through the namenode
 all data transfer occurs directly between clients and datanodes
 communications with the namenode only involves transfer of metadata
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Hadoop ecosystem
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 Many Hadoop-related projects/systems are available
 Hive

 A distributed relational database, based on MapReduce, for querying data stored in 
HDFS by means of a query language based on SQL

 HBase
 A distributed column-oriented database that uses HDFS for storing data

 Pig
 A data flow language and execution environment, based on MapReduce, for 

exploring very large datasets
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Hadoop ecosystem
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 Sqoop
 A tool for efficiently moving data from traditional relational databases and external 

flat file sources to HDFS
 ZooKeeper

 A distributed coordination service. It provides primitives such as distributed locks
 ….

 Each project/system addresses one specific class of problems
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“Big Ideas” of large-scale computing
 Scale “out”, not “up”

 Limits of Symmetric Multi-Processing and large shared-memory machines
 Hide system-level details from the application developer

 Concurrent programs are difficult to reason about and harder to debug
 Move processing to the data

 Cluster have limited bandwidth
 Process data sequentially, avoid random access

 Seeks are expensive, disk throughput is reasonable
 Seamless scalability

 From the mythical man-month to the tradable machine-hour
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Warmup: Word count
 Input

 A large textual file of words
 Problem

 Count the number of times each distinct word appears in the file
 Output

 A list of pairs <word, counter>
 counting the number of occurrences of each specific word in the input file
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Word count
Case 1: Entire file fits in main memory

 A traditional single node approach is probably the most efficient 
solution in this case
 The complexity and overheads of a distributed system affects the performance 

when files are “small”
 “small” depends on the resources you have

Case 2: File too large to fit in main memory
 How can we split this problem in a set of (almost) independent sub-

tasks, and
 execute them in parallel on a cluster of servers?
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Word count
 Suppose that

1. The cluster has 3 servers
2. The content of the input file is
 “Toy example file for Hadoop. Hadoop running example.”

3. The input file is split into 2 chunks
4. The number of replicas is 1
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Word count with a very large file
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Word count with a very large file
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Word count with a very large file
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Word count with a very large file
 The problem can be easily parallelized

1. Each server processes its chunk of data and counts the number of times 
each word appears in its own chunk

 Each server can execute its sub-task independently from the other servers of the 
cluster  

 synchronization is not needed in this phase
 The output generated from each chunk by each server represents a partial result
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Word count with a very large file
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Word count with a very large file
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Word count with a very large file
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Word count with a very large file
2. Each server sends its local (partial) list of pairs <word, number of 

occurrences in its chunk> to a server that is in charge of 
aggregating all local results and computing the global result

 The server in charge of computing the global result needs to receive all the local 
(partial) results to compute and emit the final list
 A synchronization operation is needed in this phase
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Word Count: a more realistic example
Case 2: File too large to fit in main memory
 Suppose that

 The file size is 100 GB and the number of distinct words occurring in it is at 
most 1,000

 The cluster has 101 servers
 The file is spread across 100 servers and each of these servers contains one 

(different) chunk of the input file
 i.e., the file is optimally spread across 100 servers (each server contains 1/100 of the 

file in its local hard drives)
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Word Count: complexity
 Each server reads 1 GB of data from its local hard drive (it reads one 

chunk from HDFS)
 Few seconds

 Each local list consists of at most 1,000 pairs (because the number of 
distinct words is 1,000)
 Few MBs

 The maximum amount of data sent on the network is 100 x size of local 
list (number of servers x local list size)
 Some MBs
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Word Count: scalability
 We can define scalability along two dimensions

 In terms of data:
 Given twice the amount of data, the word count algorithm takes approximately no 

more than twice as long to run
 Each server processes 2 x data => 2 x execution time to compute local list

 In terms of resources
 Given twice the number of servers, the word count algorithm takes approximately 

no more than half as long to run
 Each server processes ½ x data => ½ x execution time to compute local list
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Word Count: scalability
 The time needed to send local results to the node in charge of 

computing the final result and the computation of the final result are 
considered negligible in this running example

 Frequently, this assumption is not true
 It depends

 on the complexity of the problem
 on the ability of the developer to limit the amount of data sent on the network
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MapReduce-approach key ideas
 Scale “out”, not “up”

 Increase the number of servers, avoiding to upgrade the resources (CPU, 
memory) of the current ones

 Move processing to data
 The network has a limited bandwidth

 Process data sequentially, avoid random access
 Seek operations are expensive
 Big data applications usually read and analyze all input records/objects

 Random access is useless
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Data locality
 Traditional distributed systems (e.g., HPC) move data to computing 

nodes (servers)
 This approach cannot be used to process TBs of data

 The network bandwidth is limited

 Hadoop moves code to data
 Code (few KB) is copied and executed on the servers where the chunks of 

data are stored
 This approach is based on “data locality”
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Hadoop and MapReduce
 Hadoop/MapReduce is designed for

 Batch processing involving (mostly) full scans of the input data
 Data-intensive applications

 Read and process the whole Web (e.g., PageRank computation)
 Read and process the whole Social Graph (e.g., LinkPrediction, a.k.a. “friend 

suggestion”)
 Log analysis (e.g., Network traces, Smart-meter data, ..)
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What can we do with MapReduce?
 Solving complex problems is difficult
 However, there are several important problems that can be adapted to 

MapReduce
 Log analysis
 PageRank computation
 Social graph analysis
 Sensor data analysis
 Smart-city data analysis
 Network capture analysis
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Hadoop and MapReduce
 Hadoop/MapReduce is not the panacea for all Big Data problems

 Hadoop/MapReduce does not feet well
 Iterative problems
 Recursive problems
 Stream data processing
 Real-time processing
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MapReduce and Functional
programming
 The MapReduce programming paradigm is based on the basic concepts 

of Functional programming
 MapReduce “implements” a subset of functional programming

 The programming model appears quite limited and strict
 Everything is based on two “functions” with predefined signatures
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Building blocks: Map and Reduce
 MapReduce is based on two main “building blocks”

 Map and Reduce functions
 Map function

 It is applied over each element of an input data set and emits a set of (key, 
value) pairs

 Reduce function
 It is applied over each set of (key, value) pairs (emitted by the map 

function) with the same key and emits a set of (key, value) pairs  Final 
result
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Word Counting running example
 Input

 A textual file (i.e., a list of words)
 Problem

 Count the number of times each distinct word appears in the file
 Output

 A list of pairs <word, number of occurrences in the input 
file>
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Word Counting running example
 The input textual file is considered as a list of words L
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Word Counting running example
L = [toy, example, toy, example, hadoop]

[…] denotes a list. 
(k, v) denotes a key-value pair. 
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Word Counting running example
L = [toy, example, toy, example, hadoop]

Lm =[(toy, +1),( example, +1), ( toy, +1), ( example, +1), (hadoop, +1)]

Apply a function on 
each element 

[…] denotes a list. 
(k, v) denotes a key-value pair. 
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Word Counting running example
L = [toy, example, toy, example, hadoop]

Lm =[(toy, +1),( example, +1), ( toy, +1), ( example, +1), (hadoop, +1)]

[…] denotes a list. 
(k, v) denotes a key-value pair. 
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Group by key

(toy, [+1, +1]) (example, [+1, +1]) (hadoop, [+1]) 
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Word Counting running example
L = [toy, example, toy, example, hadoop]

Lm =[(toy, +1),( example, +1), ( toy, +1), ( example, +1), (hadoop, +1)]

[…] denotes a list. 
(k, v) denotes a key-value pair. 
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(toy, [+1, +1]) (example, [+1, +1]) (hadoop, [+1]) 

[ (toy, 2) , (example, 2), (hadoop, 1) ] 

Apply a function on 
each group 
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Word Counting running example
L = [toy, example, toy, example, hadoop]

Lm =[(toy, +1),( example, +1), ( toy, +1), ( example, +1), (hadoop, +1)]

[…] denotes a list. 
(k, v) denotes a key-value pair. 
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(toy, [+1, +1]) (example, [+1, +1]) (hadoop, [+1]) 

[ (toy, 2) , (example, 2), (hadoop, 1) ] 

Map phase

Shuffle and 
Sort phase

Reduce           
phase
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Word Counting running example
 The input textual file is considered as a list of words L
 A key-value pair (w,1) is emitted for each word w in L

 i.e., the map function is 
m(w) = (w,1)

 A new list of (key, value) pairs Lm is generated
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Word Counting running example
 The key-value pairs in Lm are aggregated by key (i.e., by word w in our 

example)
 One group  Gw is generated for each word w
 Each group Gw is a key-list pair (w, [list of values]) where [list of values] 

contains all the values of the pairs associated with the word w
 i.e., [list of values] is a list of [1, 1, 1, …] in our example
 Given a group Gw the number of ones [1, 1, 1, …] is equal to the occurrences of 

word w in the input file
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Word Counting running example
 A key-value pair (w, sum Gw .[list of values]) is emitted for each group 
Gw
 i.e., the reduce function is 

r(Gw) = (w, sum(Gw.[list of values]) )
 The list of emitted pairs is the result of the word count problem

 One pair (word w, num. of occurrences) for each word in our running 
example
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MapReduce: Map
 The Map phase can be viewed as a transformation over each element of 

a data set
 This transformation is a function m defined by developers
 m is invoked one time for each input element
 Each invocation of m happens in isolation

 The application of m to each element of a data set can be parallelized in a 
straightforward manner
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MapReduce: Reduce
 The Reduce phase can be viewed as an aggregate operation

 The aggregate function is a function r defined by developers
 r is invoked one time for each distinct key and aggregates all the values 

associated with it
 Also the reduce phase can be performed in parallel and in isolation

 Each group of key-value pairs with the same key can be processed in isolation
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MapReduce: Shiffle and Sort
 The shuffle and sort phase is always the same

 i.e., group the output of the map phase by key
 It does not need to be defined by developers
 It is already provided by the Hadoop system
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Data Structure
 Key-value pair is the basic data structure in MapReduce

 Keys and values can be: integers, float, strings, …
 They can also be (almost) arbitrary data structures defined by the designer

 Both input and output of a MapReduce program are lists of key-value 
pairs
 Note that also the input is a list of key-value pairs
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Data Structure
 The design of MapReduce involves

 Imposing the key-value structure on the input and output data sets
 E.g., for a collection of Web pages, input keys may be URLs and values may be their 

HTML content
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Formal definition of Map and Reduce 
functions
 The map and reduce functions are formally defined as follows:

 map: (k1, v1) → [(k2, v2)]
 reduce: (k2, [v2]) → [(k3, v3)]

 Since the input data set is a list of key-value pairs, the argument of the 
map function is a key-value pair

[…] denotes a list. 
(k, v) denotes a key-value pair. 
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Formal definition of Map and Reduce 
functions
 Map function

 map: (k1, v1) → [(k2, v2)]
 The argument of the map function is a key-value pair
 Note that the map function emits a list of key-value pairs for each input 

record
 The list can also be empty

[…] denotes a list. 
(k, v) denotes a key-value pair. 
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Formal definition of Map and Reduce 
functions
 Reduce function

 reduce: (k2, [v2]) → [(k3, v3)]
 Note that the reduce function

 Receives the complete list of values [v2] associated with a specific key k2
 Emits a list of key-value pairs

[…] denotes a list. 
(k, v) denotes a key-value pair. 
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MapReduce Algorithms
 In many applications, the key part of the input data set is ignored

 i.e., usually the map function does not consider the key of its key-value 
pair argument
 E.g., word count problem

 Some specific applications exploit also the keys of the input data
 E.g., keys can be used to uniquely identify records/objects
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WordCount using MapReduce: 
Pseudocode
 Input file: a textual document with one word per line
 The map function is invoked over each word of the input file
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map(key, value): 
// key: offset of the word in the file 
// value: a word of the input document 
emit(value, 1) 

reduce(key, values): 
// key: a word; values: a list of integers 
occurrences = 0 
for each c in values: 
occurrences = occurrences + c 
emit(key, occurrences) 
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